首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1021篇
  免费   290篇
  国内免费   237篇
测绘学   2篇
大气科学   1篇
地球物理   346篇
地质学   955篇
海洋学   56篇
综合类   48篇
自然地理   140篇
  2024年   2篇
  2023年   10篇
  2022年   32篇
  2021年   58篇
  2020年   35篇
  2019年   36篇
  2018年   52篇
  2017年   38篇
  2016年   43篇
  2015年   56篇
  2014年   84篇
  2013年   120篇
  2012年   51篇
  2011年   51篇
  2010年   49篇
  2009年   74篇
  2008年   96篇
  2007年   75篇
  2006年   80篇
  2005年   69篇
  2004年   45篇
  2003年   56篇
  2002年   33篇
  2001年   39篇
  2000年   41篇
  1999年   36篇
  1998年   27篇
  1997年   43篇
  1996年   25篇
  1995年   18篇
  1994年   22篇
  1993年   11篇
  1992年   15篇
  1991年   7篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1987年   1篇
  1985年   2篇
  1982年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有1548条查询结果,搜索用时 531 毫秒
1.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
2.
察尔汗盐湖地下晶间卤水蕴藏了宝贵的盐湖矿产资源,如何确定地下卤水的赋存规律以制定科学合理的卤水开采和补给方案,正成为盐湖资源大规模可持续利用亟需解决的重要问题。本文以察尔汗盐湖西北部的典型采卤区作为研究区域,1)利用新型的地面核磁共振找水仪,通过在研究区布设两条十字交叉的测线,探测并反演解译测区地下60米深度内的卤水静态赋存形式,2)结合OpenGeoSys(OGS)多物理场耦合地下水数值模拟软件,对测区地下卤水的动态运移形式进行数值模拟计算。地面核磁探测结果表明研究区含水量整体偏低,最大含水量约0.8%,平均含水量约0.4%。测点结果给出的含水层位分界面与邻近钻孔的地层层位分界面的一致性较高,浅部的层位误差在10%以下,达到了0.5米的精度。考虑到测区南北两边均有采卤渠正在汲取地下卤水,且在测区中心存在两条废弃的采卤渠,OGS地下水数值模拟研究结果表明采卤渠造成测区浅部卤水较大空缺,与研究区浅部含水量总体偏低的探测特征一致。研究结果表明地面核磁共振技术能准确探测卤水当前的赋存状态,地下水运移模拟技术可以深入认识采补活动引起卤水赋存状态的变化规律。探测和模拟结合的联合研究是确定卤水赋存规律的重要手段,研究成果可为盐湖资源合理开采高效利用提供基础资料和相关科学支撑。  相似文献   
3.
The structure, functioning and hydrodynamic properties of aquifers can be determined from an analysis of the spatial variability of baseflow in the streams with which they are associated. Such analyses are based on simple low‐cost measurements. Through interpreting the hydrological profiles (Q = f(A)) it is possible to locate the aquifer(s) linked to the stream network and to determine the type of interrelated flow, i.e. whether the stream drains or feeds the aquifer. Using an analytical solution developed for situations with a positive linear relationship, i.e. where the baseflow increases linearly with increasing catchment size, it is also possible to estimate the permeability of the aquifer(s) concerned at catchment scale. Applied to the hard‐rock aquifers of the Oman ophiolite, this method shows that the ‘gabbro’ aquifer is more permeable than the ‘peridotite’ aquifer. As a consequence the streams drain the peridotites and ‘leak’ into the gabbro. The hydrological profiles within the peridotite are linear and positive, and indicate homogeneity in the hydrodynamic properties of these formations at the kilometre scale. The permeability of the peridotite is estimated at 5 · 10?7 to 5 · 10?8 m/s. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
4.
定水头注水引起的含水层水平运动和应变   总被引:2,自引:2,他引:0  
基于含水层固体颗粒与孔隙水不可压缩的假设 ,本文导出了单井注水情况下泰斯承压含水层水平运动速度与水头之间的基本关系式。然后利用注水井壁处的应力、应变边界条件 ,进一步导出了单井定水头注水引起的泰斯承压含水层水平运动速度、位移和应变解析表达式。该水平位移与应变由两部分组成 :一部分为由注水压力本身引起的经典弹性力学解项 ,它仅随半径而变化 ,与注水时间无关 ;另一部分为由地下水头变化引起的水动力学位移和应变解项。其中 ,含水层水动力学水平位移随时间加长呈指数增长特征 ,水动力学径向应变则表现为近井处拉张、远井处挤压的分区特征 ,且近井拉张区随时间加长逐渐向外扩展。单井注水含水层水动力学水平位移、应变解的导出 ,完善和发展了单孔内压经典弹性平面力学问题解  相似文献   
5.
The Kali-Hindon inter-stream region extends over an area of 395 km2 within the Ganga-Yamuna interfluve. It is a fertile tract for sugarcane cultivation. Groundwater is a primary resource for irrigation and industrial purposes. In recent years, over-exploitation has resulted in an adverse impact on the groundwater regime. In this study, an attempt has been made to calculate a water balance for the Kali-Hindon inter-stream region. Various inflows and outflows to and from the aquifer have been calculated. The recharge due to rainfall and other recharge parameters such as horizontal inflow, irrigation return flow and canal seepage were also evaluated. Groundwater withdrawals, evaporation from the water table, discharge from the aquifer to rivers and horizontal subsurface outflows were also estimated. The results show that total recharge into the system is 148.72 million cubic metres (Mcum), whereas the total discharge is 161.06 Mcum, leaving a deficit balance of −12.34 Mcum. Similarly, the groundwater balance was evaluated for the successive four years. The result shows that the groundwater balance is highly sensitive to variation in rainfall followed by draft through pumpage. The depths to water level are shallow in the canal-irrigated northern part of the basin and deeper in the southern part. The pre-monsoon and post-monsoon water levels range from 4.6 to 17.7 m below ground level (bgl) and from 3.5 to 16.5 m bgl respectively. It is concluded that the groundwater may be pumped in the canal-irrigated northern part, while withdrawals may be restricted to the southern portion of the basin, where intense abstraction has led to rapidly falling water table levels.  相似文献   
6.
This paper presents the results of a comparative study relating to the application of four vulnerability mapping methods, GOD, AVI, DRASTIC and SINTACS, in a pilot detritic aquifer situated in NW Morocco, known as the Martil–Alila aquifer. The principal objective of this work is to determine the most suitable such methods for this aquifer type within a Mediterranean context, and to show the effect of the rainfall variations that are characteristic of the Mediterranean climate on the degree of vulnerability. The methods applied distinguish five classes of vulnerability, these being irregularly divided up in space, with the division varying according to the method in question. The vulnerability maps obtained by the different methods strongly suggest that the eastern half of the aquifer is more vulnerable to contamination than the western half, for all hydrological situations. The effect of climatic conditions on the degree of vulnerability is well represented by the DRASTIC, according to which the aquifer is moderately to strongly vulnerable during humid hydrological years and weakly to moderately vulnerable during dry ones. For the other methods, this climatic effect is limited to the area occupied by the two predominant classes (“High” and “Low” for GOD and “High” and “Moderate” for SINTACS) while it is null for AVI. In conclusion, DRASTIC appears the most suitable for mapping the vulnerability to contamination of Mediterranean coastal detritic aquifers such as the Martil–Alila aquifer.  相似文献   
7.
Remote Sensing and Geographic Information System has become one of the leading tools in the field of hydrogeological science, which helps in assessing, monitoring and conserving groundwater resources. It allows manipulation and analysis of individual layer of spatial data. It is used for analysing and modelling the interrelationship between the layers. This paper mainly deals with the integrated approach of Remote Sensing and geographical information system (GIS) to delineate groundwater potential zones in hard rock terrain. The remotely sensed data at the scale of 1:50,000 and topographical information from available maps, have been used for the preparation of ground water prospective map by integrating geology, geomorphology, slope, drainage-density and lineaments map of the study area. Further, the data on yield of aquifer, as observed from existing bore wells in the area, has been used to validate the groundwater potential map. The final result depicts the favourable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.  相似文献   
8.
Unconsolidated sand, gravel and clay deposits near Beihai and in the Leizhou Peninsula in southern China form an unconfined aquifer, aquitard and a confined aquifer. Water and soil samples were collected from the two aquifers in the coastal Beihai area for the determination of chemical compositions, minerals and soluble ions. Hydrogeochemical modeling of three flow paths through the aquitard are carried out using PHREEQC to determine water–rock interactions along the flow paths. The results indicate that the dissolution of anorthite, fluorite, halite, rhodochrosite and CO2, and precipitation of potash feldspar and kaolinite may be occurring when groundwater leaks through the aquitard from the unconfined aquifer to the confined aquifer. Cation exchanges between Na and Ca can also happen along the flow paths.  相似文献   
9.
A Triassic carbonate unit has been intensively drained by zinc and lead ore mines and numerous borehole fields since the nineteenth century. Its groundwater recharge has increased due to: pumping of water from boreholes, mining activity, and urbanization. An approach to determine the amounts of the recharge at a variety of spatial scales is presented in the paper. Different methods were used to identify and quantify recharge components on a regional and local scale: mathematical modelling was performed for four aquifers included in an aquifer system, an analytical estimation based on the assumption that an average recharge is equal to the average discharge of the hydrogeological system—for six man-made drainage centres, and the method of water level fluctuation (WLF) was applied in one observation borehole. Results of modelling have been supplemented by observation of environmental tracers (δ18O, δ2H, 3H), noble gases temperatures, and 4Heexc in groundwater. The regional aquifer’s current recharge according to estimations performed by means of modelling varies from 39 to 101 mm/year on average. Depending on the aquifer site the average precipitation ranges from 779 to 864 mm/year. In the confined part of the aquifer average recharge ranges from 26 to 61 mm/year. Within outcrops average recharge varies from 96 to 370 mm/year. Current recharge estimated by the analytical method for man-made drainage centres varies from 158 up to 440 mm/year. High values are caused by different recharge sources like precipitation, induced leakage from shallow aquifers, and water losses from streams, water mains and sewer systems. Pumping of water, mining and municipal activities constitute additional factors accounting for the intensified recharge.  相似文献   
10.
A methodology for the characterization of deep carbonate aquifers has been developed and applied to El Maestrazgo Jurassic aquifer in Castellón, Spain. Characterization of these aquifer formations, located at more than 300 m deep, consisted of a previous phase of compilation, analysis and synthesis of the existing information about the area, followed by a coordinated combination of different speciality studies: geology, stratigraphy, structural analysis, hydrogeology, hydrochemistry, geophysics and remote sensing. Geological studies included geological mapping, definition of stratigraphical units and facies and structural analysis. The aim of the hydrogeology study was to define aquifer formations, recharge area, aquifer points inventory and groundwater flow directions for the establishment of piezometric and water quality observation nets. Special techniques were applied, like thermal infrared aerial images and the evaluation of submarine groundwater discharge by means of natural radium isotopes. Hydrochemical techniques, including majority elements characterization and stable isotopes (18O, 2H and 3H) determination, allowed classifying hydrochemical facies and establishing a renewal pattern for water within the system. Geophysics was useful in determining the aquifer geometry, the features of the basement and the petrophysical characteristics of the geological formations. Preliminary results show an important tectonic complexity and the possibilities for groundwater uses in the area of study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号